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MODELS OF POLARIZABLE CONTINUA WITH INTERNAL MECHANICAL MOMENTS* 

A.V. FILIPPOV and L.T. CHERNYI 

General methods of constructing models of continua are used to obtain a 
closed system of equations for a polarizable continuum with internal 
mechanical moments, and the distribution of small perturbations in sucii 
a medium 

1. Consider a 
motion relative to 
equations: 

Here L is the 

studied. 

system of N material points with masses m, and radius vectors rv, whose 
the inertial frame of reference is described by the following Lagrange 

d at aL f 
dtr-dr=v (1 

Y Y 

Lagrangian of the system of material points, f, is the external force 

1) 

vector acting on the v-th point, and t is the time. 
Let the Lagrangian be invariant with respect to translation and rotation of the frame of 

reference, and to the translation of the initial instant of time. We shall also assume in 
accordance with the Galileo's principle of relativity, that the dependence of the Lagrangian 
on the velocities r,' has the following form (here and henceforth the summation over v is 
carried out from v =1 to v = N): 

L=-+ 
l 

mv3 'a - u (t, r1, . . . ,,rN) (1.2) 

(In this case the passage to another inertial frame of reference changes the Lagrangian by a 
total derivative of some function). Then the laws of conservation of momentum n, angular 
momentum K, energy s and mass momentum of the system G all hold in the closed system (i.e. 
when f, = 0 ) . 

Taking into account the external forces, we obtain from (1.1) the following balance 
equations: 

dIl 
7= vt r, f 
dK 
dl= r'v x fw 

dG r=-t 
c f v 

(1.3) 

The existence of ten balance equations (1.3) is justified by the corresponding symmetry 
of the LagrangianL, notedabove,withrespect to the complete ten-parametric group of the 
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Galileo transformations. 
Let K be the radius vector of some point associated with the system. We can always 

write the expressions for K, G in the form 

K=Rx II+Mk, G=MR-tII+MI, M=~,rnv 

k=-&x @v-R) x mvr.v’, ~=$&L&.-R) 

(1.4) 

(1.5) 

The quantities k and 1 can be regarded as the internal mechanical characteristics of the 
system. If Kis the radius vector of the centre of inertia of the system, then from the last 
expression of (1.5) it follows that 1 GO. The non-zero characteristic 1 should, generally 
speaking, be included in the number of defining parameters, provided that the velocity of the 
mechanical system is defined as the velocity of some point of the system not coinciding with 
its centre of inertia. (For example, if the velocitiesoftheatoms possessing a dipole moment 
are defined as the velocities of their nuclei). 

Under the Galilean transformation r = r' + Vt', t = t', V = con& the quantities K, G, k, 1 
will be transformed as follows: 

K=K'+G'xV, k=k’+l’xV, G=G’, I=l’ (1.6) 

Moreover, the balance equations (1.3') obtained for a system of material points will be 
generalized to the case of a continual model. The representations (1.4) will be taken into 
account and the transformation formulas (1.G) will be regarded as valid for the internal 
mechanical moments of a continuum. 

2. Let us consider a model of a continuum with internal mechanical moments: the internal 
mass moment 1 and internal angular momentum k relate to unit mass of the medium. We construct 
the model by postulating an integral law of conservation of mass of the medium, and integral 
laws representing a generalization of the balance equations (1.3) for a system of material 
points. The first three equations, i.e. the equation of momentum, energy and angular momentum 
have the usual form /l/ except for the fact that the moment p of the unit mass of the medium 
possessing the internal mass moment 1 , is not equal to the velocity of the medium v . The 
equation generalizing the last equation of (1.3) for a continuum is new, and has the form 

Here dG is the mass moment of an element of the medium of volume dV, by virtue of the 
second relation of (1.4) & = (r- tp + 1) pdV; p is the mass density of the medium, paa are 
the stress tensor components, F is the density of external forces, N,Q@ are the quantities 
defining the additional mass moment fluxes within the volume V and across its surface 2; the 
Greek tensor indices take the values 1, 2, 3 and the Latin indices the values 1, 2, 3, 4. 

In the region where the characteristics of the medium change smoothly, the integral laws 
mentioned above reduce to the differential equations (2.1)-_(2.4), and (2.1) must be used to 
derive (2.3), (2.4) for the internal moments k and 1 from the corresponding integral laws 

$-+divpv=O, p$=Vpb+F’ 

de 
p dt - = VR (P’=‘v,) - V& + F,vO + F, 

dka 
P-;ii-=e=~vPaa~vV,ge+p[pxup+L= 

dl= 
~-;i;-=bQa6+pW-fl)+ N’= 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Here e is the total energy of unit mass of the medium, and F,, La, pa,@ are quantities 
defining the additional energy and angular momentum fluxes of the medium respectively, within. 
its volume V and across its surface X. When PzQ@EN~sO, Eq.(2.4) reduces to the rela- 
tion p = V, which is normally used in the mechanics of continua. 

In particular, using the quantities Fa, F,, L=,Na we can describe the action of an electro- 
magnetic field obeying Maxwell's equations 

divD=4nq, rotH=$j ++2!& 

i a8 divB=O, rotE=--TT 

(2.5) 

on the continuum. Here Q, j are the electric charge and current densities, E and D are the 
electric field strength and induction, H and B denote the magnetic field and induction, and 
c is the velocity of light in vacua. 

To specify the quantities Fa, F,, La, Na, we will use the following argument. 



When there are no external forces, (2.1)-_(2.4),written for a system which includes, III 
addition to a continuum, an electromagnetic field, have the following corresponding tensor 
equations in the relativistic mechanics: 

v,pk = 0, p dKJ’ dr = pij _ pji + v,p (2.6) 

Here Pik are components of the four-dimensional energy-momentum,tensor of the system, 
dt is the differential of the characteristic timeofthe particle, K” are components of the 
four-dimensional.internal mechanical momentum tensor, and we have, in the characteristic frame 
of reference K*@ = Eawky*, K*“d = cl*a. The expression for the components P'j can always be 
written in the form /2/ 

p"=T'j_+_ $A, s&_ iix F,pg'j k Ff&jP (2.7) 

where T'j are components of the four-dimensional energy-momentum tensor of the system, S,,‘j 
are the components of the four-dimensional Minkowskii tensor, and Fi, and Hij are the compon- 
ents of four-dimensional electromagnetic field tensors. Taking into account the first rela- 
tion of (2.71, we can write (2.6) in the form 

VET”---_&,; p$= Tij‘_ Tj* + S& _ S&,, + Vkqijk 

Further, regarding the electromagnetic field as a source of external forces and taking 
into account relation (2.7) and Maxwell's equations (2.5), we obtain 

P=-Vk~~=~E"+~jxBQ+~(PV'L~-~Ba~+ 

MTB - BPM) 

F1=_-cV,S&==j.E+E$+B$ -+&(E.P+-B.M) 

L, = E,@.$&J = MxB,+Px& 

N”=~(S;U,,-S~,)=$PxBa+~ExMa 

(2.01 

Equations (2.8) are written in a global Cartesian basis of Minkowskii space with the 
metric ~~~~~~~ = diag(-_1, -1, -4, i), while Vk and Va denote, respectively, the four-dimensional 
and three-dimensional covariant derivatives. 

3. Henceforth, we shall confine ourselves to the case of a non-conducting, charge-free 
medium. We shall also assume that there is no magnetization in the characteristic frame of 
reference. Then, from the general formulas for transforming the electromagnetic parameters 
an changing from one inertial frame of reference to another /l/, it follows that 

Y=c-‘.P x v,P=P’ (3.1) 

apart from terms of order $1~2 . &I asterisk denotes quantities in the characteristic frame 

of reference. Using relations (1.61, we obtain the following relations for the internal 

moments: 
k=k*+l* xv, l=l* (3.2) 

Below, we shall confine ourselves to the case when the instantaneous stress tensors are 
equal to zero @a = Q"o = 0. From (2.1)-(2.4) and (3.11, (3.2) we haste the equation of heat 
flow (henceforth, terms of order v2/cz will be omitted during the transformations) 

dU 
pdl 

= PoB-~E*.P*~~B)~~~-V~*~+ 
( 

(3.3) 

pE*. (T +n*Xcu)+pcD.~-pa.(y$+lx~) 

e,B = + (Vbva + Vave), 0 = rot v 

U=e -+v. (p-v) ++E*.Jc*,+-P (3.4) 

Since the microscopic mass moment of the system is introduced in the same way as the 
polarization moment, we shall assume that the following relation holds: 

l* = n*/y, y = const 

and restrict ourselves to the case of an isotropic medium, when 

we can find the quantities T and p from the formulas 
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T = iW,laS, p = p’&7,/i?p 

Then the equation of heat flow (3.3) yields, with the above assumptions, the equation of 
entropy balance 

pT$-= [p(aB,-((tE*.P”--)gag]~~-VV.~+ 

PW’ (+ +~x~)+w~(k*-~x~n) 

(3.5) 

w=E*- 

derived with the help of the identity 

which follows from the fact that the scalar function u, can depend on its vector arguments 
JX, dnldt only through the convolutions rr-dsddt, x2, (dad&)‘. 

If the presence of internal angular momentum in the characteristic system is connected 
only with the dependence of the function U, on the derivatives dnaldt, i.e. 

k*=dtlOXn 
d dx/dt 

then the last term on the right-hand side of (3.5) will vanish. Representing the entropy gain 
in the form /l/ ds = d,s+ d,s and specifying the external flux 

pT-+ - Tb(+) 
we obtain the following expression for the dissipative functional: 

(3.6) 

Let us assume that IJ is a quadratic function of thermodynamic fluxes: e+ TV, (1/T), w 
and the corresponding forces are defined by the relations 

p(0fl) - (+E*.P*-pp)g@+& (3.7) 

p(% 

When y = elm, the vector E* -_.a/7 represents the effective electric field acting on the 
polarization electrons. The action of inertia forces on-the conduction electrons is known as 
the Stuart-Tolman effect, and can also be described by introducing the effective field vector 
EL - a/y 131. 

The complete system of equations of the model comprises Maxwell's equations (2.5), the 
equations of continuity, momentum balance (2.1), internal momentum balance (2.31, (2.41, 
entropy balance (3.5), and the kinetic relations (3.7). Note that using (2.4) we can trans- 
form the momentum balance equations (2.1) and moment equations (2.3) to the form 

du= 
Pdt - vsP@ - +V=(P.E+~M)+++;-x~=+ 

P~VaE+M.V=B--p~ 

(3.8) 

4. Consider the problem of the propagation of weak perturbations in a charge-free, non- 
conducting medium possessing internal mass moment. In this case the motion of the medium will 
be described by.a system of equations containing Maxwell's equations (2.5) with q = 0, j = 0, 

the equations of continuity and 

dun 
.? dt= -Vap+P.VaE~MmVaB++&n x B=_ (4.1) 

PT ~=~p~(-+cx~)l, E*=E -+Bxv 

M= +Pxv, p=p$!L, T+ 
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In (4.1) T is a scalar function of the state parameters, and has dimensions of time. 
Polarization relaxation is the only irreversible process in the medium taken into account. 

Let us assume, for simplicity, that the function U, is given in the form 

(4.2) 

_(x and 9 are certain functions of the density and entropy). 
We shall assume that a weak perturbation propagates through a homogeneous medium at rest, 

and there is no electromagnetic field in the unperturbed state. 
Linearizing the equations with respect to the unperturbed state, we obtain 

rotH=-&$, div.H=O, rotE=--_$, divD=O 
(4.3) 

s + p0 divv = 0, Po~=_-~~Vap'_baVa~'_-~ 

Here p' and s'denote theperturbations in the density and entropy of the medium, p’zp- 
pa; a-’ = s - so (PO and SO denote the density and entropy in the unperturbed state). 

We shall seek a solution of (4.3) in the form 

A (za, t) = AI exp [i (k.r - ot)] (4.4) 

(where A represents any function appearing in (4.3)). Denoting for convenience the amplitudes 
of the parameter perturbations by the same letters as the perturbations themselves, we obtain 
from (4.3) the following set of algebraic equations: 

(E+4np0n).k=0, H.k=0 (4.5) 

E+4np0~=-+ kxH, H=+kxE 

op'=p&.v, [p@v =a$p'k + b&k + +t?i~ 

EC- 3 -f-ov t 
I 

-;- ST + qdn - ip,XWt, p&X’=0 

Solving (4.5) for the components of the vector I we arrive (in the case when 0 # 0) 
at the following relation: 

{%!$! ~1-(~)2l-‘_~j~l-(~)Z]-‘)(n.k)k= 
(4.6) 

[4npo~l-(~)e]-1+Q}n 

B=$+(+ ) + q 03 - ipoT 

This equation describes the fact that two types of waves may propagate through the medium. 

Transverse waves: z.k = 0. From (4.5) it follows that in 'this case the perturbations 
amplitude vectors E, H, v, n are orthogonal to the wave vector k ; the density perturbation 
is equal to zero: p' = 0. From (4.6) we find the relations connecting the wave frequency and 
wave number 

At the low frequencies (o-0) the above expression becomes a well-known dissipation 
relation for the electromagnetic waves in a dielectric /3/. 

elk = cll/,_, e = 1 + 4xp,x 

In the limit as o-+00 , the phase velocity of propagation of transverse waves is equal 
to the speed of light in vacua: o/k = C. 

Longitudinal waves: XII k. In the longitudinal wave the perturbation amplitude vectors 

E, *, v are parallel to the wave vector k, and the perturbationofthe magnetic field is 

zero H = 0. In this case relation (4.6) yields 

At high frequencies (o+ca) the above relation becomes 

021kZ = aOzqy*/(qy" + 1) 

1n the limit as ~+O,wehave elk = a,. Thus the quantity a, has the meaning of the 
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"equilibrium" phase velocity of the longitudinal sound waves. 
When the internal mass moment is neglected (in the limit as ~-+~) from (4.3) it follows 

that in the transverse waves the electromagnetic quantities (n, H, E), and in the longitudinal 
waves the mechanical quantities (v, p) are the only ones perturbed. 

In addition to the two types of weak perturbations discussed here, we also have a solu- 
tion of (4.5) corresponding to the case when o = 0. This wave does not propagate through 
space and represents an arbitrarily small deviation in the entropy distribution from its value 
in the equilibrium state. From (4.5) it follows that in the entropic wave n = 0, H = E = 0, 
v=o and the only non-zero perturbations are those of density and entropy. 

The authors thank L.I. Sedov and V.V. Gogosov for discussing the paper. 
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NON-LINEAR EQUATIONS OF THE DYNAMICS OF AN ELASTIC MICROPOLAR MEDIUM* 

V.I. KONDAUROV 

The non-linear equations for a continuous elastic medium with three 
additional degrees of freedom associated with local rotation, are 
considered. Such an elastic medium is called micropolar /l/. The exist- 
ence of an elastic potential is proposed for it; thermal effects are 
neglected. 

The purpose of this paper is to study certain qualtiative properties 
of the equations that are closely associated with the concept of 
hyperbolicity. The complete set of equations is represented as a system 
of local conservation laws, closed by finite relationships yielding the 
rheology of the material. The possibility of such a representation is 
based /2, 3/ on the fact that the gradients of the particle displacment 
and angle of rotation are used as a measure of the deformation. Local 
conservation laws for the compatibility of the strain and velocity fields 
of fairly simple structure are formulated. 

The velocities of propgation of characteristic surfaces are studied 
for the dynamic equations for the general case of the material under 
consideration. The existence of real velocities, the necessary condition 
for hyperbolicity, results in a constraint on the form of the elastic 
potential function, which is an analog of the SE-inequality /4/ in the 
classical theory of non-linearly elastic media. 

The system of non-linear equations being studied is reduced to symmetric 
form by replacing the vector of the solution. The necessary condition 
for such a transformation /5/ is the existence of an additional energy 
conservation law that follows from the system under consideration. The 
symmetric form of the equations enables us to formulate the sufficient 
condition for hyperbolicity - the condition of convexity of the elastic 
potential in its arguments. An estimate is obtained for the growth of 
the solutions of the Cauchy problem and the ensuing uniqueness theorem. 
The presence of the symmetric form of the system enables a general form 
to be obtained for the transport equation that governs the rate of change 
of a weak discontinuity along a bicharacteristic. 

1. Fundamental equations. Let X be the radius-vector of a material particle of a 
body'in the reference configuration x. We assume that the displacement vector u = u(X, t) and 
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